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Abstract. We report experimental results for hydrothermal waves instability in thermocapillary-driven flow
in an extended cylindrical geometry. The waves are shown to appear via a supercritical Io instability. At
larger fluid depth, the conventional predictions of Smith and Davis – planar waves referred to as HW1 – are
observed. For smaller depth, i.e. for larger aspect ratios, a new kind of spatial behavior is reported which
may be interpreted as a new instability. This new instability is localized in the center of the cell and its
spatial structure close to onset resembles targets, i.e. purely radial waves. We refer to these hydrothermal
waves as HW2.

PACS. 47.54.+r Pattern selection; pattern formation – 47.20.-k Hydrodynamic stability – 47.27.Te
Convection and heat transfer – 47.35.+i Hydrodynamic waves

1 Introduction

Thermocapillary convection occurs in many different engi-
neering situations such as surface coating or liquid bridges
in directional solidification for example [1]. In all those sys-
tems, the variation of the surface tension with the temper-
ature leads to the Marangoni effect in which a temperature
gradient drives a thermocapillary convective flow. Such
flows were shown to be subject to the so called hydrother-
mal wave instability by Smith and Davis [2]. Many exper-
imental [3–6], theoretical and numerical [2,4,7,8] studies
were devoted to the hydrothermal waves in different ge-
ometries. Here we focus on the spatial properties of the
waves in the case of the bidimensionally extended system
obtained when the vertical dimension is very small com-
pared to the two horizontal ones, and of the order of the
capillary length.

The thin horizontal fluid layer is subject to an imposed
horizontal temperature gradient which drives a basic flow,
in which the velocity of the fluid is finite everywhere and
proportional to the temperature gradient.

When the temperature gradient is increased, a pattern
forming instability occurs, in the form of traveling waves.
The theoretical linear stability analysis was performed in
an infinite system in the absence of gravity forces by Smith
and Davis [2] who discovered the hydrothermal waves in-
stability. This study was then completed by Mercier and
Normand [7] who considered the additional effect of buoy-
ancy and Priede and Gerbeth [8] who examined the con-
vective nature of the instability at onset. Let us point out
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that below the wave instability threshold, the basic flow
may break up into standing co-rotating rolls if the depth of
the layer is large enough [6,9]. Moreover, if we denote the
wavevector in the horizontal plane k and define the prop-
agation angle ψ as the angle between the horizontal tem-
perature gradient ∇T and this wavevector, it was shown
that hydrothermal waves are planar waves which propa-
gate with k ·∇T > 0, i.e., from the cold side towards the
hot side, with an angle of propagation depending on the
Prandtl number Pr [2]. For small Pr, k is almost parallel
to ∇T whereas for large Pr, it is almost perpendicular
to ∇T .

Many experiments have been performed with horizon-
tal temperature gradients in simple different extended ge-
ometries. Low Prandtl number fluids (liquid metals) were
not studied because of the difficulty to maintain a clean
free surface. Very high Prandtl number fluids such as high
viscosity silicon oils did not reveal any time-dependent in-
stability. So experiments in which this instability occurred
were all performed with intermediate Pr, such as acetone,
alcohol or low viscosity silicon oil (this paper). For such
medium Prandtl numbers (4–20), an intermediate angle
of propagation is expected.

The first direct observation of hydrothermal waves was
performed in a long rectangular channel extended only in
the direction perpendicular to the temperature gradient
by Daviaud and Vince [3]; they saw waves with a prop-
agation angle of 80◦ corresponding to propagation along
the channel. A similar behavior was reported in a long
annular channel [10]. On the contrary, Platten et al. [4]
used a rectangular cell confined in the horizontal direc-
tion perpendicular to the temperature gradient in which
the waves were forced to propagate along the gradient.
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Those experiments were confined in a direction and so
the angle of propagation was constrained. When increas-
ing the dimensions in both horizontal directions, a finite
constant propagation angle was observed, for example in
silicon oil by Riley and Neitzel [5], Pelacho et al. [6]. In
all those experiments, the waves travel from cold to hot
side with a constant angle of propagation. We will refer to
these planar hydrothermal waves as HW1 [11]. Burguete
et al. [12] looked at the effects of both the confinement in
the gradient direction and the fluid depth; they showed
that for small depth and/or large extent between the hot
and the cold side, the source of hydrothermal waves could
be located in a point region and emit cylindrical waves,
i.e., waves with a varying propagation angle.

A cylindrical geometry was studied by Schwabe
et al. [13], in an extended cylindrical cell heated from the
center; in this case, the authors found an oscillatory in-
stability but did not report the spatial pattern in 2D.

The present work will show experimental evidence for
a localized wave instability in which the angle of propaga-
tion varies with the applied temperature gradient; we will
call these waves HW2. We report here an experiment in a
large cylindrical cell heated from the outside and cooled
from the center with a thin fluid layer. The waves we ob-
serve propagate from the cold center to the hot external
boundary of the cell. For small fluid depth, waves are emit-
ted by a point source – the center of the cell – with a
purely radial wavevector at onset, which make them look
like targets [14]. The pattern remains localized around this
source.

This paper is organized as follows: we first describe
the experimental apparatus in Section 2 and report the
quantitative observations and characteristics of HW2 in
Section 3. A brief qualitative report of HW1 is given in
Section 4. Direct temperature measurements are presented
and commented in Section 5. Discussion and conclusion
then close the paper in Section 6.

2 Apparatus

2.1 Convection cell

We impose a radial temperature gradient by the ther-
malization of 2 copper blocks with circulating water,
see Figure 1. The inner block is a cylinder of diameter
dint = 8 mm, with temperature denoted Tint. The outer
block is a cylinder of internal diameter dext = 135 mm
with temperature Text > Tint. The temperature measure-
ments are performed using platinum thermoresistances lo-
cated in the copper blocks, 1 millimeter close to the fluid
boundary. In our experiment, the control parameter is the
temperature difference ∆T = Text − Tint, indicating the
distance from the thermal equilibrium state, and ranging
from 0 to 20 K, with a precision of typically ±0.02 K.

The bottom of the cell is made of a plane glass mirror
of thermal conductivity κm filling the gap between the two
blocks. The operating fluid is silicon oil V065 (polysilox-
ane) from Rhodia, with viscosity ν = 0.65× 10−6 m2 s−1,
Prandtl number Pr = 10 and thermal conductivity κf.
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Fig. 1. Sketch of the apparatus and the geometry. ∆T = Text−
Tint > 0 in all the experiments.

The upper surface of the fluid is its interface with gas (air
and oil vapor) of conductivity κa. The thermal boundary
conditions are such that: κa � κf � κm, i.e., the bottom
is conducting and the top surface is insulating.

The depth of the layer can be varied but the main re-
sults reported here were obtained with h = 1.2±0.05 mm.
Thus the two horizontal aspect ratios Γr = (dext −
dint)/2h = 55.2 and Γθ = π(dext + dint)/2h = 187.2 are
constant and large enough to consider our system as “two-
dimensional”, by opposition to the case of one-dimensional
systems [3,10] in which the traveling waves are forced to
propagate in a single direction, and all the information on
the spatial structure is therefore contained in one spatial
dimension. Some of our experiments were performed with
h = 1.9 mm – close to the depth used in [3,10] – thus giv-
ing Γr = 33.4 and Γθ = 118.2, still two-dimensional. The
observations are qualitatively different and are briefly ex-
posed in Section 4; quantitative results will be reported
elsewhere.

In order to avoid menisci up on the lateral bound-
aries, we have made the top of those copper boundaries
being always located 0.05 mm below the free surface. This
approach is almost the same as the one used in refer-
ences [5,13], but it allows some little deviations from the
average fluid depth. So there is a 0.05 mm layer covering
the two copper blocks. This layer is at rest: its Rayleigh
and Marangoni numbers, measuring the buoyancy abil-
ity, are very small even for greater values of Text, and so
always lower than the critical values leading to Bénard-
Marangoni convection.

The silicon oil we use is volatile and we keep the right
level of fluid by injecting oil with a regulation apparatus.
The fluid level changes are optically monitored: a light
beam is sent on the surface with an incidence angle of
45◦, most of it enters the fluid and is reflected by the
bottom mirror before exiting the fluid and being received
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by a two-quadrants photodiode. Each quadrant of this
device produces an electrical potential difference propor-
tional to the light intensity it receives. Changes in fluid
depth causes changes in the optical path and results in a
displacement of the impact points of the beam over the
photodiode quadrants. The induced differential electrical
signal then reflects a fluid depth smaller or larger than the
reference value and we use this information to move up or
down a tank to inject or remove fluid from the convection
cell. This regulation loop allows us to operate at different
values of Text and Tint, i.e., at different values of the evapo-
ration rate, with a constant fluid depth for long experience
times. The latest experiments have also been performed
with the cell closed with a glass window (for visualiza-
tion) located several centimeters above the free surface,
which reduces both evaporation and the noise due to gas
circulation but does not change any quantitative result.

2.2 Measurement techniques

The perfect transparency of the silicon oil allows us to use
shadowgraphy to make both qualitative and quantitative
observations. A CCD camera with 256 gray levels and a
computer are used to digitalize the signal; we make both
snapshots and spatio-temporal diagrams of simple geo-
metrical loci; we use circles and radii, both centered with
the cell to obtain information about two perpendicular
directions, in order to completely describe the wave num-
ber components: we have access to its projections along
radial and azimuthal direction. Examples of photographs
are given in Figure 2. All amplitude, wavenumber and fre-
quency data are obtained by Hilbert transforms over the
spatio-temporal diagrams.

A thin thermocouple (Alumine/Chromel) is also used
to record the radial temperature dependence of the basic
state at different depths. Those measurements are pre-
sented in Section 5.

3 Results: critical behavior of HW2 instability

3.1 Characterization of the first instability: amplitude
and frequency

For 0 ≤ ∆T < ∆THW2 = 7.6 ± 0.1 K, neither oscil-
lating nor time-dependent flow is observed; this is what
we call the basic state. This flow corresponds to a flat
torus [15]. No co-rotating rolls modulations of this torus
are observed [6]. The regularity of the basic flow is easily
broken by external perturbations such as air movements,
and radial defects are often observed (Fig. 2).

For ∆T > ∆THW2, in addition to the basic state, a
wave pattern is present in the cell, localized near the cold
center. Owing to their 2D spatial behavior (see below),
these hydrothermal waves are labeled HW2. Close to the
onset, the wave pattern looks like pulsing targets and the
copper block at the center of the cell behaves like a source
of radial waves. For higher ∆T , the pattern looses its az-
imuthal symmetry. Examples of such a pattern are seen

(a)

(b)

(c)

(d)

Fig. 2. Shadowgraphy snapshots of the cell for h = 1.2 mm. (a)
∆T = 7.8 K: slightly above onset, purely radial time-dependent
target pattern. (b)∆T = 8.5 K: azimuthal symmetry is slightly
broken. (c) ∆T = 9.5 K and (d) ∆T = 14 K: the pattern looks
like spirals, with left-turning and right-turning waves regions
separated by sources and sinks. The thin radial line at the
bottom of each photograph is a defect of the basic flow.

in Figure 2. We look at the local amplitude of the wave
pattern, given by the shadowgraphic technique and com-
plex demodulation, to determine the value of the threshold
∆THW2.

This local amplitude, averaged on a radius, is propor-
tional to (∆T −∆THW2)1/2, as seen in Figure 3. At this
value, the transition to the wave-state is analogous to a
second order phase transition: it is the result of a super-
critical instability. This behavior is illustrated in Figure 3,
showing the 1/2 critical exponent for the order parameter
dependence on ∆T near the transition point. Owing to
the cylindrical geometry, the radial average represents a
global measure of the wave amplitude over the entire cell.

Moreover, the instability is oscillatory, i.e., with a non
vanishing frequency as can be seen in Figure 3, where
the frequency is plotted versus ∆T . The plotted value
of the frequency is obtained by averaging the local fre-
quency over a circle; it is almost constant whatever the
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Fig. 3. Top: Local amplitude of the wave pattern averaged on a
single radius versus ∆T ; circled points stands for experimental
results and solid curve is the square root fit. Bottom: Frequency
of the waves at r = 16.4 mm from the center versus ∆T .

temperature difference is, and varies very little with the
position in the cell; see also Figure 13. As we will see in
the next section, the wavenumber is finite at onset, thus
the HW2 instability is a Io instability [16].

3.2 Wave vectors and spatial behaviors

Even more interesting are the properties of the wavevector
which in our 2D cylindrical geometry is described with two
cylindrical coordinates kr = k · er and kθ = k · eθ = n/r,
where r is the local radius and n is the number of wave-
lengths in the azimuthal direction. As we can see, there
is no relation between kr and kθ which behave indepen-
dently with ∆T (Fig. 4). This justify the “2D” labeling
of this hydrothermal waves instability (HW2) by oppo-
sition to the unidimensional hydrothermal waves (HW1)
predicted by linear stability theory [2]. These waves, pre-
viously seen in [5,6,12] and reported here in Section 4, are
characterized by the proportionality between kr and kθ.
The knowledge of kr and kθ allows the computation of the
angle ψ = (er,k) between the temperature gradient and
the wavevector. We have:

ψ = arctan
(
kθ
kr

)
= arctan

(
n

rkr

)
·

The variation of ψ versus ∆T at a fixed position in the
cell is represented in Figure 5.

A main result of our study is the linear vanishing of
kθ with (∆T −∆THW2) (Fig. 4), i.e., the fact that we can

Fig. 4. Wavevector components of the HW2 waves at distance
r = 16.4 mm from the center versus the temperature difference
∆T . Upper part of the figure: azimuthal wavenumber n = rkθ,
positive for right-turning waves and negative for left-turning
waves. Lower part of the figure: radial wavenumber kr. For a
given ∆T , those values n and kr are almost uniform in the cell.

Fig. 5. Angle of propagation ψ of HW2 at distance r =
16.4 mm from the center versus the temperature difference∆T .
ψ is defined as the angle between rT and k and is computed
using data from Figure 4.

define another order parameter, with a critical exponent
of 1. This behavior of kθ changes qualitatively the pattern
structure: from a concentric – roll-like – pulsing target at
onset, we then have a spiraling pattern – with more and
more spiral branches – as we get higher above onset. This
is illustrated in Figure 2.

Moreover, the region unstable to the 2D waves is lo-
calized near the center as can be seen in Figure 6 where
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Fig. 6. Amplitude profiles along radius r for different ∆T . The
fluid is located between r = 4 mm and 67.5 mm. For clarity,
profiles are shifted in the vertical direction proportionally to
∆T . The values of ∆T are 8, 9, 10, 11, 12, 14, 16, 18 and
20 K. For this last value, HW1 are present in the outer region
(r > 35 mm).

Fig. 7. Radial position of the HW2 front from the center of
the cell, versus ∆T . The fluid is located between r = 4 mm
and 67.5 mm.

the amplitude profile along a radius, at a fixed azimuthal
position in the cell, is plotted for different values of ∆T .
Increasing the temperature difference is shown to increase
the region occupied by the HW2. Figure 7 shows the evo-
lution with ∆T of the front position limiting the region
where HW2 exist; this position is defined as the one for
which the amplitude is half the maximum amplitude of
the corresponding profile. As one can see in Figure 7, the
position of the front evolves linearly with ∆T and so the
pattern invades the cell.

As was pointed out in Figure 3, the average amplitude
over a radius increases smoothly from ∆THW2 but the lo-
cal amplitude evolution depends on the radial position,
as suggested by Figure 6. The critical evolution of the lo-
cal amplitude averaged along circles of different radii r is
represented in Figure 8. For locations near the center (di-
amonds and crosses in Fig. 8), the instability appears at
∆THW2 = 7.6 ± 0.1 K. The local amplitude behaves first
with a critical exponent 1/2 and then reaches saturation.
In the middle of the cell, the bifurcation is imperfect (cir-
cles in Fig. 8). For r & 40 mm, the amplitude is always

Fig. 8. Amplitude of the waves at various distance r from the
center: r = 11.7 mm (�), r = 16.4 mm (+), r = 21.1 mm (◦).
The � symbols, corresponding to r = 40.3 mm, show specif-
ically the HW1 pattern which arises at ∆T = 18.5 K (see
Sect. 4). All solid lines and curves are guide for the eye.

Fig. 9. Averaged power spectra, for different values of the con-
trol parameter ∆T = 8, 10, 12, 16 and 20 K. For clarity, the
spectra have been shifted in the vertical direction proportion-
ally to ∆T . On the spectrum for ∆T = 8 K, the main peak is
narrow, so the harmonics. On the spectrum for ∆T = 16 and
20 K, the peaks (main and harmonics) are wide. Beyond the
first harmonic, a power law can even be extracted for the spec-
trum. A snapshot corresponding to the ∆T = 20 K pattern is
presented in Figure 12. Time spectra have been averaged along
a radius.

zero: the HW2 pattern remains localized near the center;
but for larger ∆T , HW1 instability sets in as it will be
commented in the next section.

As ∆T is increased, the spiraling pattern quickly
reaches a chaotic state, with a wide band of allowed
wavenumber and frequencies. The broadening of the spec-
trum can be seen in Figure 9, and is quantified in Fig-
ure 10, where the width ∆f of the main peak, correspond-
ing to the hydrothermal waves, is plotted versus ∆T . This
is an indirect measure of the number of modes excited at
a given value of the control parameter ∆T . This num-
ber increases with the temperature constraint following
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Fig. 10. Width of the peak corresponding to HW2 in spectra,
versus ∆T ; the spectra have been averaged along a radius.

a square-root behavior: ∆f ∝ (∆T − ∆THW2)1/2. These
data can be used to track the threshold value and we then
find 7.7 ± 0.1 K, in good agreement with the amplitude
data of Figure 3. Patterns corresponding to wide spectra
may be due to the large spatial extension – large aspect
ratios – and so the large number of degrees of freedom. Lo-
cal amplitudes get saturated (Fig. 3) and so the energy,
proportional to (∆T − ∆THW2)1/2, is distributed over a
wide range of modes.

4 The classical hydrothermal wave instability:
HW1

Let us briefly present the results on another hydrother-
mal wave instability. When studying thermocapillary in-
stabilities in the same cell but with a different depth
h = 1.9 mm, we have shown that a different kind of hy-
drothermal waves appears as a supercritical Io instabil-
ity [11]. Their equiphases almost fit the law r ∝ θ, i.e., are
Archimedean spirals (see Fig. 11). The angle ψ between
the temperature gradient and the wavevector is almost
uniform in space (varying typically from 60◦ to 40◦ along
r) and independent of ∆T . So n = kθ/r is proportional
to kr and both are independent of the temperature dif-
ference. The Archimedean spiral pattern can then be de-
scribed using only one wavenumber component – kr or
n – just as in the case of an unidimensional system. So
we call those waves “1D hydrothermal waves” (HW1) and
we remark that the theory of Smith and Davis [2], pre-
dicting a constant angle of propagation between the gra-
dient and the wave-vector is well verified for the HW1 if
we use n as the orthoradial wavenumber, whereas it is
not for the HW2. We believe that HW1 were the kind
of hydrothermal waves observed in long unidimensional
channels [10,11]. Please note that the constant angle be-
tween the imposed temperature gradient and the wave-
vector reduces the number of degrees of freedom for the
description of the wave-vector from the value 2 (two free
components) to the value 1 (one free component). So
HW2 are waves with wave-number described by two in-
dependent spatial components (kr, kθ) whereas HW1 are

Fig. 11. Shadowgraphic photograph of the cell for a higher
fluid depth h = 1.9 mm and ∆T = 14.25 K. HW1 is ob-
served as rotating Archimedean spirals. Please note that the
circular pattern localized near the center corresponds in this
case to stationary corotating rolls – a modulation of the basic
thermocapillary flow [9] – that should not be mistaken for the
time-dependent HW2 instability. The top picture is a direct
representation, and the bottom one is a representation in the
orthogonal plane (θ, r).

described by one component (kθ), usually the compo-
nent perpendicular to the temperature gradient as in ref-
erences [3,10,12]. Another difference between HW1 and
HW2 is the fact that the HW1 pattern is not localized
near the cold end wall but invades the whole cell as soon
as the onset is crossed.

Note that this HW1 instability occurs on a roll-
modulated basic flow, as can be observed in Figure 11 close
to the center of the cell. On the contrary, HW2 instability
at smaller depth h = 1.2 mm occurs on a non-modulated
basic flow. The existence of stationary rolls over the ba-
sic flow for larger fluid depth confirms the observations in
an extended rectangular cell [6]. A detailed study of this
structure in the present geometry is under progress.

Let us come back to the aim of this paper, i.e., the
description of the waves observed at h = 1.2 mm. For
∆T > ∆THW1 = 18.5 K, there is a qualitative change in
the observed pattern which was formerly only composed
by HW2. The waves now invade all the cell, and are no
more localized near the center (for ∆T = 20 K, see pho-
tograph in Fig. 12 and amplitude profile in Fig. 6).
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Fig. 12. Shadowgraphic photograph of the cell for h = 1.2 mm
and ∆T = 20 K. The top picture is a direct representation, and
the bottom one is a representation in the orthogonal plane
(θ, r).

We interpret this as a new HW1-pattern superposing
over the existing HW2-pattern. HW2 remains dominant
close to the center but HW1 spiral waves invades all the
rest of the cell. This picture is clearer if we represent
the data in the (θ, r) plane (Fig. 12); the wavelength in
the region occupied by HW2 is larger than the wavelength
in the region where no waves previously existed.

Let us point out that these HW1 are not a secondary
instability of the former HW2 pattern. First, HW1 and
HW2 exist in different locations in the cell. Second, HW2
are already subject to secondary instabilities: one can see
sources and sinks, wavelengths annihilations and phase
modulations below the onset of HW1. Those secondary in-
stabilities are tracked by the broadening spectra (Fig. 9).
Just as for HW2, the HW1 instability is a supercritical
Io instability (Fig. 8). The critical wavenumber and fre-
quency of HW1 and HW2 are slightly different: Snapshot
(Fig. 12) shows the difference between both wave-vectors.
Figure 13 – a radial frequency profile – shows the two
HW1- and HW2-domains oscillating at slightly different
frequencies.

It is worth mentioning that the two wave-patterns pro-
duced by the two instabilities interact together: as HW2
is almost turbulent at the HW1 threshold, the resulting
pattern behaves chaotically. HW1 are thus being forced
by turbulent HW2. The quantitative study of the HW1
instability, for h = 1.9 mm, will be reported elsewhere.

Fig. 13. Radial frequency dependence for ∆T = 20 K. In the
HW1 region, the frequency is constant and different from the
value in the HW2 region, near the center.

Fig. 14. Horizontal temperature profiles along a radius. The
total fluid depth is h = 1.2 mm. Each point is the average value
of the temperature measured at z = 0.3, 0.6, 0.9 and 1.2 mm.
The three curves correspond to an imposed temperature gra-
dient Text − Tint = +5, +10 and +15 K (from top to bottom).
The inset gives the theoretical conductive profiles in each case.

5 Temperature profiles

The localization of HW2 instability near the center of the
cell may be due to the cylindrical geometry: the conduc-
tive regime – as in the mirror bottom – is characterized
by a logarithmic distribution of the temperature in the
radial direction, suggesting a much stronger temperature
gradient near the center. In order to test this point, we
have performed temperature measurements to determine
the local temperature gradient. For this, we average four
temperature r-profiles (for different z = 0.3, 0.6, 0.9 and
1.2 mm) which are almost similar; the resulting profiles
are presented in Figure 14 for ∆T = 5, 10 and 15 K. The
theoretical gradient should be hyperbolic in the perfectly
conductive case. Experimentally however, the gradient is
observed to be almost constant in the bulk of the cell,
to within a few percent. We observe two boundary lay-
ers, a small one close to the outside boundary (hot) and a
stronger one close to the inner rim (cold). The cold bound-
ary layer contributes to approximately one half of the total
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Fig. 15. Vertical temperature profiles at r = 17.5 mm, for
h = 1.2 mm and Text − Tint = 33 − 18 = 15 K. The center
curve – circles – corresponds to the averaged data and the
two lateral ones correspond to the extreme values. See text for
details.

temperature difference. Due to the specific imposition of
the temperature gradient over the cell (the copper blocks
are totally immersed), there is a vertical temperature gra-
dient between the free liquid surface and the air. This
implies the existence of a heat flux at the surface which
depends strongly on the coordinate r. This explains the
asymmetry between both boundary layers and the depar-
ture from the conductive logarithmic temperature profile.
The evaporation due to the oil volatility also contributes
to a vertical temperature gradient and therefore also dis-
torts the horizontal temperature profile. The character-
istic size of the boundary layer is very small (less than
1 mm) and cannot explain the localization of the HW2
pattern, which is several wavelengths long in the radial
direction at threshold (typically 10 mm). Far from this
boundary layer, the temperature gradient is uniform, as in
the rectangular case, and so the classical theory of Smith
and Davis for hydrothermal waves should be applicable.

Figure 15 shows the vertical temperature dependence
for r = 17.5 mm and ∆T = 15 K, in the wave-existence
zone. The temperature signature of the hydrothermal
waves is an oscillation of temperature in the region where
waves exists, and so extreme values are plotted. The am-
plitude of the oscillation is slightly greater close to the bot-
tom than at the free surface but globally, the wave appears
to occupy the whole layer of fluid. We have checked that
all temporal information given by shadowgraphy is exactly
the same as those given temperature measurements, just
as in references [6,12].

6 Summary and discussion

We have investigated the behavior of a non-linear wave
instability in an extended geometry, and observed two dif-
ferent patterns issuing from two different instabilities, la-
beled HW1 and HW2. HW1 propagate as predicted by
linear stability analysis [2,8] in that the two components

of the wave vector are proportional and define a constant
angle ψ = (er,k) between the temperature gradient and
the wavevector. This angle is almost constant in the cell
and depends probably on the Prandtl number [2]. HW1
are the only hydrothermal waves obtained in cells with
the smaller aspect ratio Γr in the direction of the tem-
perature gradient [3,10–12]. But they can exist for larger
values of this aspect ratio and have been observed in ex-
tended rectangular geometry [6] and here in cylindrical
geometry. If the geometry is confined, as in [4], it is even
hard to define this angle because the waves are then forced
to propagate along the extended direction of the gradient.
Here, we have isolated HW2 which are another wave sys-
tem obtained only when the aspect ratio is large and the
depth small. HW2 differs qualitatively from HW1 on two
spatial properties:
– the angle ψ, given at constant distance from the center

(r = 11.6 mm), varies from 0◦ at onset to 45◦ at ∆T =
20 K (Fig. 5) instead of being constant and close to 60◦
for HW1,

– HW2 are localized wave-patterns, with a fixed front
position whereas HW1 always extend everywhere in
the cell once the onset is crossed.
On the quantitative point of view, both HW1 and

HW2 appear through a supercritical Io instability. The
frequency and the modulus of the wavenumber of these
structures are of the same order of magnitude whatever
the fluid depth is (1.2 or 1.9 mm) and they are of the
same order as the values measured with the same fluid in
different geometries [3,10,12]. When both HW1 and HW2
are present (1.2 mm), we checked that the frequency and
the wavevector were different in the two structures.

Note that the orientation of the temperature gradi-
ent is important because the symmetry (x 7→ −x, ∆T 7→
−∆T ) does not hold anymore in cylindrical coordinates.
Observations in cylindrical geometry with exchanged hot
and cold sides [13] are then different and will be reported
elsewhere.

Let us recall observations in rectangular geometry [11,
12] with large aspect ratio. In this experiment, a transition
was reported from a line-source emitting planar waves at
larger depth to a point source emitting locally cylindrical
waves at smaller depth. This point source recalls the tar-
get pattern of HW2: the transition occurring at h ' hc

may be interpreted as the HW1/HW2 transition. A fre-
quency shift was also measured at the transition. In both
experiments, we observe a transition depth hc ∼ λ where
λ =

√
(σ/ρg) = 1.4 mm is the capillary length. The value

of hc may depend slightly upon the aspect ratios.
So the hydrodynamic behavior can be seen to change

with the fluid depth h. This change may be explained by
two different mechanisms:
– (i) the possible effect of the absolute fluid depth; this

is accounted by the ratio h/λc.
– (ii) the possible effect of confinement, inhibiting the

spatial structure in the small horizontal dimension [11,
12]. This is related to the horizontal aspect ratio Γr.
Mechanism (i) suggests that if the depth h is lower

then capillary length, the instability will be linked with
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capillary effects. Qualitative observations allow us to sug-
gest that HW2 are connected with surface deformations.
On the other hand, mechanism (ii) relies only on aspect
ratio and geometrical effects; the reduction of Γr will tend
to transform a bidimensional system into an unidimen-
sional one, and so HW2 into HW1. Of course, if one keeps
the same experimental cell – as we do in this paper – the
two mechanisms are linked and it is impossible to separate
them. To discern between those two interpretations, one
should build two apparatus with the same aspect ratio,
but different absolute fluid depth; another way to deter-
mine the right mechanism would be to operate with fluids
of different surface tension, i.e., different λc, and to ver-
ify the conjecture hc ' λc. While this work remains to
be done, the hypothesis (ii) seems to us to be the most
relevant.

Some critical behaviors of the HW2 pattern have
been isolated. The amplitude and the width of the main
peak in the power density spectra both evolve as (∆T −
∆THW2)1/2. The amplitude behavior is a classical result
for a pattern coming out of a supercritical instability. The
broadening of the spectrum allows one to define it as an-
other order parameter. It measures the apparitions of de-
fects such as sources and sinks of waves in the pattern.
An explanation for its smooth variations with ∆T cannot
be found easily but may be linked to the large number of
degrees of freedom excited in an extended geometry and
the rapid decrease of the coherence length. As far as we
know, no such behavior was reported so clearly neither in
extended 1D-geometries, nor in 2D. The continuous trans-
formation of HW2 from targets to opening spirals is mea-
sured by the variation of the azimuthal wavenumber with
a critical behavior in (∆T −∆THW2).

The HW2 instability is localized, but this is not due
to a localization of the temperature gradient in the corre-
sponding spatial domain, as proved by a radial tempera-
ture measurement.

This work suggests different further investigations.
We expect the thresholds ∆THW1,2 of the instabili-
ties to cross for intermediate value of the layer depth
1.2 < h < 1.9 mm, i.e., we can expect to face a
codimension 2 point, and then study the competition
of the two waves near onset. The transition to spatio-
temporal chaos, obtained here for h = 1.2 mm with
HW2 between 7.5 and 18 K has revealed power law
spectra that should be analyzed in details. In particular,
a very small increase of ∆T (to reach twice the threshold

value) drives the system in a phase chaos state, while the
corresponding Marangoni numbers are only twice the crit-
ical value. This hydrothermal waves system allows us to
study the effect of the second horizontal dimension on a
supercritical wave pattern, a very rich non-linear system
far from being well understood yet.

We thank C. Gasquet who developed the image and signal
acquisition software, V. Padilla and G. Francinet for technical
support on the construction of the apparatus.
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